Assessment Schedule – 2005

Calculus: Manipulate real and complex numbers, and solve equations (90638)

Evidence Statement

	Achievement Criteria	Q	Evidence	Code	Judgement	Sufficiency
	Manipulate real and complex numbers and solve equations.	1(a)	$\overline{5+7i} - 2(3-4i) = 5 - 7i - 6 + 8i = -1 + i$	A1	No alternative.	Achievement: 3 × code A1 and
		1(b)	$20 \operatorname{cis} \frac{5\pi}{12}$	A1	Or equivalent.	$2 \times \text{code A2}.$
		1(c)	$\frac{69 + 46\sqrt{3}}{-23}$			Only 1 × code A2 available from question 6.
			$= -3 - 2\sqrt{3}$	A1	No alternative.	No repeated skills.
vement		1(d)	$(2\operatorname{cis}\frac{\pi}{6})^5$			
Achie			$= 32 \operatorname{cis} \frac{1}{6}$ = $-16\sqrt{3} + 16i$	A1	Or equivalent.	
		2(a)	$x = 3 \pm 2\sqrt{5} i$	A2	Or equivalent.	
		2(b)	(2x-1)(x+2)(x-2) = 0 x = 0.5, -2, 2	A2	Must factorise. No alternative.	
		2(c)	$2^{x-1} = 7$ x = 3.81 (3 sf)	A2	Or equivalent.	

	Achievement Criteria	Q	Evidence	Code	Judgement	Sufficienc y
	Solve more complicated equations.	3	$\ln (5x - 3) - \ln (x + 1) = \ln p$ $\ln \frac{5x - 3}{x + 1} = \ln p$			Achievement with Merit: EITHER
			5x - 3 = px + p 5x - px = p + 3 $x = \frac{p+3}{5-p}$	A2 M	Or equivalent	As for Achievement plus 2 × code M
Achievement with Merit		4	$5 - p$ $r^{3} \operatorname{cis} 3\theta = 125 \operatorname{cis} \pi$ $r^{3} = 125$ $r = 5$ $3\theta = \pi + k.2\pi$ $\theta = \frac{\pi}{3} + k.\frac{2\pi}{3}$ $k = 0 \qquad \theta = \frac{\pi}{3}$ $k = 1 \qquad \theta = \pi$ $k = -1 \qquad \theta = -\frac{\pi}{3}$ $5\operatorname{cis} \frac{\pi}{3}, 5\operatorname{cis} \pi, 5\operatorname{cis} (-\frac{\pi}{3})$ $(\sqrt{x - k})^{2} = (\sqrt{x} - 2)^{2}$ $x - k = x - 4\sqrt{x} + 4$ $4\sqrt{x} = k + 4$	A2 M A1 A2 M	Or equivalent Conversion to polar form. Or equivalent.	OR 3 × code M Only 1 × code M available from question 6.
			$16x = k^{2} + 8k + 16$ $x = \frac{1}{16}(k^{2} + 8k + 16)$	A2 M	Or equivalent	

	Achie vement Criteria	Q	Evidence	Code	Judgement	Sufficiency
t with Excellence	Solve problem(s) involving real or complex numbers.	6	$z^{4} = 1$ $z^{2} = \pm 1$ $z = \pm 1, \pm i$ The four roots of 1: 1, i, -1, -i	A2	No alternative.	Achievement with Excellence: As for Merit plus code E.
		*	$z^{2} + 1 = 1$ $z = 0$			
		*	$z^{2} + 1 = i$ $z^{2} = -1 + i$ $z^{2} = \sqrt{2} \operatorname{cis} \frac{3\pi}{4}$			
			$r^{2} \operatorname{cis} 2\theta = \sqrt{2} \operatorname{cis} \frac{3\pi}{4}$ $r = \sqrt[4]{2} \qquad 2\theta = \frac{3\pi}{4} + k.2\pi$			
			$\theta = \frac{3\pi}{8}, -\frac{5\pi}{8}$ $z = \sqrt[4]{2} \operatorname{cis}\frac{3\pi}{8}, \sqrt[4]{2} \operatorname{cis}\left(-\frac{5\pi}{8}\right)$	М	Or equivalent.	
Achievemen		*	$z^{2} + 1 = -1$ $z^{2} = -2$ $z = \sqrt{2}i, -\sqrt{2}i$	A2	Or equivalent.	
		*	$z^{2} + 1 = -i$ $z^{2} = -1 - i$ $z^{2} = \sqrt{2} \operatorname{cis}\left(-\frac{3\pi}{4}\right)$ $r^{2} \operatorname{cis} 2\theta = \sqrt{2} \operatorname{cis}\left(-\frac{3\pi}{4}\right)$ $r = \sqrt[4]{2}$ $2\theta = -\frac{3\pi}{4} + k.2\pi$ $\theta = -\frac{3\pi}{8}, \frac{5\pi}{8}$ $z = \sqrt[4]{2} \operatorname{cis}\left(-\frac{3\pi}{8}\right), \sqrt[4]{2} \operatorname{cis}\frac{5\pi}{8}$	М	Or equivalent.	
			8 ² 8 There are seven solutions.	Ε	Must have 5 or more solutions.	

Judgement Statement

Achievement	Achievement with Merit	Achievement with Excellence
Manipulate real and complex numbers, and solve equations.	Solve more complicated equations.	Solve problem(s) involving real or complex numbers.
3 × A1 and 2 × A2 (only one A2 can be from Q6)	Achievement <i>plus</i> 2 × M <i>or</i> 3 × M (Only one M can be from Q6)	Merit <i>plus</i> 1 × E